2013 Water Quality Report for St. Leo University
Pasco County
PWS ID No. 6515161

Para obtener una copia de este documento, cuál, contiene la información sobre su agua potable, gerencia del parque del contacto.

We’re very pleased to provide you with this year’s Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide you a safe and dependable supply of drinking water. Our water is obtained from two groundwater wells which draw from the Floridian Aquifer. The water is then chlorinated for disinfection purposes.

In 2013, the Florida Department of Environmental Protection performed a Source Water Assessment on our water system and a search of the data sources indicated no potential sources for contamination. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at www.dep.state.fl.us/swapp.

It is in everyone’s best interest to conserve and protect our drinking water. Please do not flush medications down toilets or sink drains and always remember to use water wisely. For more information, please visit EPA’s website @ http://water.epa.gov/drink/.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. St. Leo University is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at http://www.epa.gov/safewater/lead.

While your drinking water meets USEPA’s standard for arsenic, it does contain low levels of arsenic. USEPA’s standard balances the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water. USEPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of Industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

St. Leo University routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2013. Data obtained before January 1, 2013, and presented in this report are from the most recent testing done in accordance with the laws, rules, and regulations.

We at St. Leo University are committed to ensuring the quality of your water. If you have any questions about this report or if you would like to obtain a copy; please contact Utility Group of Florida, LLC at (727) 863-5161. For any questions or concerns about the information provided, please feel free to call any of the numbers listed. We encourage you to be informed about your water utility.
Definitions

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirement that a water system must follow.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close as feasible to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ND: Not Detected by Laboratory Analysis

Parts per million (ppm) or **Milligrams per liter (mg/l)**: one part by weight of analyte to 1 million parts by weight of the water sample.

Parts per billion (ppb) or **Micrograms per liter (ug/l)**: one part by weight of analyte to 1 billion parts by weight of the water sample.

Picocurie per liter (pCi/L): measure of the radioactivity in water.

Water Quality Monitoring Results

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of sampling (mo./yr.)</th>
<th>MCL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radium 226 + 228 or combined radium pCi/L</td>
<td>Dec-12</td>
<td>N</td>
<td>1.1</td>
<td>N/A</td>
<td>0</td>
<td>5</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium (µg/l)</td>
<td>Dec-12</td>
<td>N</td>
<td>1.2</td>
<td>N/A</td>
<td>0</td>
<td>30</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of</th>
<th>Dates of sampling (mo./yr.)</th>
<th>MCL Violation</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony (ppb)</td>
<td>Dec-12</td>
<td>N</td>
<td>0.13</td>
<td>N/A</td>
<td>6</td>
<td>6</td>
<td>Discharge from petroleum</td>
</tr>
<tr>
<td>Arsenic (ppb)</td>
<td>Dec-12</td>
<td>N</td>
<td>1.5</td>
<td>N/A</td>
<td>10</td>
<td></td>
<td>Erosion of natural deposits; runoff from orchards; runoff</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>Dec-12</td>
<td>N</td>
<td>0.0062</td>
<td>N/A</td>
<td>2</td>
<td>2</td>
<td>Discharge of drilling wastes;</td>
</tr>
<tr>
<td>Lead (point of entry) (ppb)</td>
<td>Dec-12</td>
<td>N</td>
<td>0.31</td>
<td>N/A</td>
<td>15</td>
<td></td>
<td>Residue from man-made pollution such as auto emissions</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>Apr-13</td>
<td>N</td>
<td>1.7</td>
<td>N/A</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrite (as Nitrogen) (ppm)</td>
<td>Apr-13, NOV-13</td>
<td>N</td>
<td>ND - 1.0</td>
<td>N/A</td>
<td>1</td>
<td>1</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Selenium (ppb)</td>
<td>Dec-12</td>
<td>N</td>
<td>1.2</td>
<td>N/A</td>
<td>50</td>
<td>50</td>
<td>Discharge from petroleum and metal refineries; erosion of</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>Dec-12</td>
<td>N</td>
<td>6.3</td>
<td>N/A</td>
<td>N/A</td>
<td>160</td>
<td>Salt water intrusion, leaching</td>
</tr>
<tr>
<td>Thallium (ppb)</td>
<td>Dec-12</td>
<td>N</td>
<td>0.11</td>
<td>N/A</td>
<td>0.5</td>
<td>2</td>
<td>Leaching from ore-processing</td>
</tr>
</tbody>
</table>

Stage 1 Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of sampling (mo./yr.)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG or MRDLG</th>
<th>MCL or MRDL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>1/13 through 12/13</td>
<td>N</td>
<td>0.2</td>
<td>0.2 - 2.2</td>
<td>MRDLG = 4</td>
<td>MRDL = 4.0</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Haloacetic Acids (five) (HAAS) (ppb)</td>
<td>Aug-11</td>
<td>N</td>
<td>5.48</td>
<td>N/A</td>
<td>NA</td>
<td>MCL = 60</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>TTHM (Total trihalomethanes) (ppb)</td>
<td>Aug-11</td>
<td>N</td>
<td>0.93</td>
<td>N/A</td>
<td>NA</td>
<td>MCL = 80</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Lead and Copper (Tap Water)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminant and Unit of Measurement</td>
<td>Dates of sampling (mo./yr.)</td>
<td>Al Violation Y/N</td>
<td>90th Percentile Result</td>
<td>No. of sampling sites exceeding the AL</td>
<td>MCLG</td>
<td>AL (Action Level)</td>
<td>Likely Source of Contamination</td>
</tr>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>Sep-12</td>
<td>N</td>
<td>0.24</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>Sep-12</td>
<td>N</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits</td>
</tr>
</tbody>
</table>

For chlorine, the level detected is the highest running annual average (HAA), computed quarterly, of monthly averages of all samples collected. For haloacetic acids or TTHM, the level detected is the average of all samples taken during the year. Range of Results is the range of individual sample results (lowest to highest) for all monitoring locations.

In 2013 our water system violated a drinking water standard.

St. Leo University routinely monitors for the presence of drinking water contaminants. We failed to collect a representative sample for the 3rd Quarter / July-August Dichloromethane & Nitrite parameters.

The table below lists the contaminants we test for, how often we sample for them, how many samples we take, and when samples were taken.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Required sampling frequency</th>
<th>Number of samples taken</th>
<th>Samples should have been taken</th>
<th>Samples were taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrite & Dichloromethane</td>
<td>Quarterly</td>
<td>4</td>
<td>Jan.-March Qtr 1 April-June Qtr 2 July-Sept. Qtr 3 Oct.-Dec. Qtr 4</td>
<td>2-19-13 4-25-13 8-12-13 11-11-13</td>
</tr>
</tbody>
</table>

- We mistakenly collected the 3rd Quarter sample a month early and therefore it counts as a missed sample event for the 3rd quarter 2013.
- We are happy to report that all 4 sets of samples had results both below the Maximum Contaminant Level's (MCL) as well as being below the Minimum Detection Limit's (MDL) and that the lab has qualified each as being (U), The compound was analyzed for but not detected.